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1 Introduction

During the centuries, the human needs to have and maintain secrets developed
in different ways giving birth to Cryptography: the art of writing or solving
codes. This science wants to solve a communication problem between Alice and
Bob: Can Alice speak with Bob using an encryption scheme, without anyone
eavesdrop their communication?

For centuries, mathematicians developed different encryption scheme in order
to protect data. They are composed by three different algorithm:

– A key generation algorithm G that return two different key: a private key
sk and a public key pk

– An encryption algorithm E that takes the public key and a message m and
outputs a ciphertext c

– A decryption algorithm D that takes the private key and a ciphertext c
and outputs a message m

One requirement needed in order to use the scheme is correctness: for a
given pair of keys sk,pk generated by G, the decryption with sk of the encryption
with pk of a message m, is the message m. Formally D(sk, E(pk,m)) = m.

In this scenario, Alice can give Bob the public key and Bob will send dif-
ferent ciphertext c1, c2, · · · , cn to Alice ans she will be able to decrypt them
and compute all the function that she wants, like the sum of all the messages.
What if Alice wants to compute the sum but she doesn’t have the computational
power or the memory space in order to save all the ciphertext? Can we build
a new algorithm for evaluation Eval that takes as input a function f and some
ciphertexts c1, · · · , cn and outputs the encryption of the function evaluated in
the messages E(pk, f(m1, · · · ,mn))?

This is the idea and requirement that we add to an encryption scheme in
order to define a homomorphic encryption scheme: the ability to compute
functions on encrypted data.

The use cases are quite different: consider Alice sending a lot of encrypted
health-information to a cloud storage. One day, Alice wants to get some statistics
in order to check if she’s healthy. Alice out-source the computation to the cloud
and she just receive the result that only she, as the private key owner, can
decrypt and check.



2 Gentry’s Idea: Bootstrapping [FDAT:Intro]

In 1978, Rivest, Adleman and Dertouzos [7] suggested that it might be possible
to modify the RSA scheme in order to obtain a fully homomorphic encryption
scheme, without succeeding. The word fully describe the possibility to compute
all the possible functions. For 20 years, a concrete fully homomorphic scheme
was missing in the cryptography scenario.

Until in 2009, Gentry’s PhD thesis [4] explains how to build such an encryp-
tion scheme and only one year later, the first implementations started to appear
[5]. Gentry’s idea focuses on lattices which can be defined as the integer linear
combinations of a vector basis of a vector space. In fact, it is linear algebra.

We randomly pick an odd integer p and then we encrypt a bit-message m
as c = m + 2r + qp where q is a random integer and r is a small noise. The
decryption is made by computing different modulo (c (mod p)) (mod 2). In this
way, we retrieve the correct message only if the particular noise was small1.

Since the scheme is based on linear algebra, we can easily compute sum and
products. The only problem is the noise that will grow up every time we compute
a single operation and if the noise is too big, the decryption algorithm will return
the wrong message.

How can we avoid this problem? Bootstrapping.

Imagine that in our homomorphic scheme, we can evaluate the decryption
function without having the noise problem: we fix the ciphertext c and we de-
fine the decryption function D(·, c) that takes as input a secret key and always
decrypt c. For this reason, we homomorphically evaluate Eval(D(·, c), ·) and in
order to maintain correctness, we have to input the encryption of the secret key.
This is the main concept behind fully homomorphic encryption.
We decrypt a ciphertext with a lot of noise in a secure/encrypted way and we
obtain a new ciphertext with small noise and so a ciphertext that we can re-use
in our computation. Bootstrapping is a function that re-fresh the ciphertexts
and allows us to compute arbitrary polynomial functions.

3 Security and Improvements [FDAT:Adv1]

Encryption scheme must to be secure, but defining security is not an easy task.
There are different definitions of security and they are sometimes used in spe-
cific cases. Either the case, proving security has always the same construction:
assuming the complexity-hardness of a particular problem, fixing a security
model and so what an adversary can or cannot do, reducing the security of
the encryption scheme to finding the solution of the hard problem.
In this way, security is based on the computational model and the complex-
ity/mathematical assumptions.
1 In fact, |r| < p
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3.1 Assumptions

Almost all the fully homomorphic encryption scheme, that can be found in lit-
erature, are based on solving lattice problems that are well know hard problem
in mathematics [1]. Usually, the problem used2 are:
– Learning With Error (LWE): it is the decision problem of distinguishing

between a noisy inner-product and uniformly random samples. The searching
problem is defined as: choose a ∈ Znq uniformly at random, r according to
some distribution χ. Given polynomial pair (a, 〈a, s〉/q + r), find s ∈ Znq .

– Shortest Vector Problem (SVP): it is the problem of finding the short-
est (or closest) vector in a lattice with respect to a norm |·| (informally, a
distance): given {b1, · · · , bm} vectors in Rn, find the shortest non-zero vector
v such that for all non-zero vectors x in the lattice, it holds |v| ≤ |x|.

3.2 Reductions, Post-Quantum Crypto and Efficiency

A complexity reduction is an algorithm that transform a problem A into another
B. It can be denoted with A ≤Comp B where Comp will represent the compu-
tational model that we are using. A computational model is just the properties
and the machine that it is used for computation. For example it can be a Turing
Machine, a Circuit but even the more rare “Paper, Pen and a Human”.
The reduction gives us a order between problems and even more: if A ≤Comp B
and we are able to solve B, it means that we are able to solve A. Let’s thing
about some daily problem using ourself as a computational model. Imagine A =
“find the right key for a specific door” and B = “opening a closed door” are two
particular problems. It is easy to reduct A to B just considering that “wen you
open a door, you have to search for a specific key”. So we have that A ≤Comp B.
If we now imagine that we can easily open all the closed door, we are trivially
able to find the key of a specific door.

The security of lattice based homomorphic encryption reduces to lattice’s
problems and they are considered hard in the classical computational model
which is the probabilistic polynomial time Turing Machine, in fact our com-
puters. On the other hand, these problems are considered hard even using a
quantum-computational model that uses a quantum-computer.
This means that if one day we will be able to use a quantum-computer, the
lattice based encryption schemes will still be secure while different encryption
scheme, such as RSA or Diffie Hellman, will be broken since they reduct to dif-
ferent problem like integer factorization or discrete logarithm in a finite field
that can be easily be solved using the Shor’s algorithm, a quantum algorithm
that is really fast in solving the discrete logarithm.

On the other hand, fully homomorphic encryption scheme are not completely
implementable or efficient. The main reason is the trade-off that we have to con-
sider when we define the security of a scheme. It is considered secure3 if the
2 Or with small variation.
3 NIST recommendation give standard security parameter that we can use in daily

implementation.



computational cost to break the scheme is more than 2λ operation. This is de-
fined as λ-bit of security.

In the original Gentry’s paper [? ], from λ-bit of security, a ciphertext will
approximately have λ5 bits. This means that in the standard case of λ = 80,
we will have ∼ 3, 03 gigabit for a single ciphertext. Even the bootstrapping is a
really slow algorithm due to the really big ciphertext. This is clearly unfeasible
to use in a real-world scenario.
On the other hand, different papers tried to improve this gap by fining new
construction and assumptions like Ring-LWE or Ideal-LWE that are build over
a algebra’s rings; or by “moving” the problem to another part of the encryption
scheme like “bigger public key, but small ciphertext”. As an example, in Gentry
et al.’s [6], they simplify the encryption scheme construction in order to achieve
a faster bootstrapping. Or Chillotti et al.’s homomorphic encryption scheme [2]
that is even faster!

4 Post-Quantum Quantum Encryption [FDAT:Adv2]

Quantum computer is a new technology that slowly get its position in the com-
puter science world. A quantum computer is nothing more than a standard
computer with a fundamental property: its register can be in a superposition.
Superposition is a special spin-state of a particle. Generally, the spin of a par-
ticle can be encoded with 0 xor 1. In quantum physics, a particle can have an
additional spin which is 0 and 1. A quantum computer register, in fact, can
have this special superposition state that allows computation in a completely
different way.

It is almost of common knowledge that quantum computer can break clas-
sical public key encryption since, in 1997, Shor [8] published a polynomial time
quantum-algorithm that can factorize and solve the discrete logarithm in finite
fields. This are the main hard-assumption at the base of RSA, Diffie-Hellman
and Elliptic Curves Cryptography.

While waiting for a quantum computer to destroy almost all the public-
key cryptography, we can prepare ourself with quantum cryptography: using
a quantum computer in cryptography. The problem of developing quantum-
algorithm is far more spread in different research area such as information the-
ory, since quantum-information is not usual Shannon’s theory, electronics and
physics, since building quantum-circuits is not a well known technology like the
transistor, and mathematics/computer science, since algorithms for this machine
compute in a different way and have different properties with respect to a more
deterministic computation.

Dulek et al.[3] quantum-homomorphic encryption scheme are just one exam-
ple of the study of different research area in order to build an encryption scheme
that can be used by a quantum computer.
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