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Abstract. GPUs have become popular computing platforms for a wide
spectrum of applications, offering promising acceleration capabilities through
unique hardware features. In the realm of security, GPUs have had dual
use: as means to increase systems security and as a source of vulnera-
bilities to compromise systems. We summarise two recent results in the
field: PixelVault, a system that uses a GPU to protect cryptographic
keys, as well as work that exploits GPU vulnerabilities to inspect user’s
data.

1 Introduction

Graphics Processing Units (GPUs) are standard components of modern com-
puting systems, from massive servers to tablets and mobile phones. Initially
designed for graphic rendering, in the last decade, GPUs have gained popularity
as acceleration platforms for any general purpose computation (GPGPU com-
puting). Applications that employ heavy computations and data parallelism are
typical targets for GPU acceleration [7].

Recently, GPGPU computing paradigms have made their way into the field
of security. GPUs have been successfully employed to speedup the computation
involved in many security applications. Early work accelerated cryptographic
operations on GPUs, exploiting the available parallelism to achieve significant
speedups [8]. In a similar manner, Intrusion Detection Systems and kernel in-
tegrity monitors are example applications that have been ported to GPUs [9,
10].

On the other hand, GPUs can be used as potentially powerful attack tools [11,
12]. Recent work has also started investigating the security vulnerabilities of
GPUs themselves, indicating that they can leak sensitive data [1, 13].

1.1 Brief Background

GPUs typically act as separate co-processors, connected to the host via a serial
bus. They contain several multiprocessors, with each multiprocessor consisting
of simple stream processors (SPs) that can be used for general purpose computa-
tion [4] (see fore example figure 1). Compared to CPUs, that have sophisticated
control logic (e.g. branch prediction, out of order execution), GPU execution
relies on many, simple threads that operate on a Single Instruction Multiple
Threads fashion (the same instruction is executed in parallel, on different data,
by many threads).

Stream processors within a multiprocessor share on-chip memory, that may
be configured in a way that part of it is shared memory (directly addressable



Fig. 1. A simplified view of a typical GPU memory hierarchy from [2]

by the programmer) and the rest is L1 cache (transparent to the programmer).
On some architectures, different multiprocessors may share a common L2 cache.
The global device memory is the lowest level in the memory hierarchy of the
GPU, accessible by all threads.

There are two main APIs for general processing in GPUs, that allow the
programmer to have control over the GPU: CUDA and OpenCL [5, 6]. Although
each API uses it’s own terminology, in rough terms, they enable the following
basic steps of GPU execution: (i) Transfer input from the host to the device; (ii)
launch kernels (functions written to run on GPUs); (iii) transfer results back to
the host.

2 Frontier Paper 1: Information leaks through the GPU

Lee et al. [1] are among the first to explore memory related vulnerabilities of
GPUs and present attacks that manage to inspect victim’s user data left over
in GPU memory. They demonstrate the applicability and effectiveness of their
attacks by inferring which web-page the user is browsing, after inspecting the
rendered pixels.

In more detail, Lee et al. identify that the memory management of mod-
ern GPUs raises many security concerns. The foremost source of vulnerabilities
comes from the way new memory is allocated. Upon allocating new memory to
a user, the GPU drivers do not initialise the previous contents, allowing the at-
tacker to read any data that has been left over on the global or local memory. In
fact, even if the user manually invalidates some of their sensitive data, a certain
portion of the programs memory (e.g. kernel code, arguments) is still available
for the attacker to see. Moreover, the fact that in the GPU compute paradigm
the programmer has the ability to manually access and configure parts of local
memory, allows the attacker to gain access even to user data saved in local and
private memories.

The authors introduce two simple attacks that exploit these vulnerabilities, in
a scenario where the attacker and the victim are both users of the same system
and they share a GPU for rendering and computations. The End-of-Context



attack, consists of a loop that monitors GPU available memory to determine
when the victim application finished using the GPU, then attempts to allocate
all available GPU memory to read the victims data. The End-of-Kernel attack is
launched between different kernels run by the victim application and attempts
to read data kept in the local and private memory. Lastly, a complementary
attack that targets specifically AMD GPUs, relies on the running time variation
of a kernel to determine if a victim application is running, then reads the users
memory before they are able to cleanup and overwrite their sensitive data.

To demonstrate the applicability of their approach, the authors launch these
attacks to infer the web-page that a user is browsing, either in Chromium or
Firefox. They compare the data gathered by the attack with pre-computed pro-
files of popular websites and compute a measure of similarity to correctly infer
the rendered web-page. In the paper they propose 3 such measures: a Jacard In-
dex based on the set of pixel sequences captured, the Euclidian distance between
the histograms of two pixels and a combined approach that uses both metrics.
The attacker is able to correctly infer the web-page most of the times, though
for high accuracy, the approach requires enough knowledge of the user’s web
browser and GPU type.

3 Frontier Paper 2: PixelVault

PixelVault by Vasiliadis et al. [2] is a system for securing cryptographic keys and
performing computations exclusively on the GPU. The idea is that, by keeping
the secret keys in GPU registers, an attacker that has fully compromised the
host will still be unable to retrieve the keys.

The security of computations in PixelVault relies on the following concepts:
First, a kernel is created on bootstrap that stays active forever and consumes all
available device resources, to make sure that it has exclusive control of the GPU.
Second, the shared keys are always kept in GPU registers, that are reported to
be automatically zeroed in the event that a kernel is terminated.

Following the above design principles, any computation with the secret keys
is done using those registers, thus the keys are never leaked into the rest of the
memory subsystem (which might be readable by an attacker). Sensitive data that
does not fit in the register file, is kept encrypted in device memory. Moreover, the
authors make sure that the entire source code of the system resides in instruction
cache, to defend against code modification attacks.

The authors evaluate AES and RSA prototypes implemented on PixelVault
that protect the secret keys in case of a full system compromise. As a side
benefit, they report better encryption/decryption throughput, compared to CPU
execution.

3.1 Attacks on PixelVault

Building a secure computation system on top of a GPU is a promising approach.
However, systems like PixelVault rely on hardware and API features that are,



often purposely, not thoroughly documented by the GPU vendors and may be
subject to change. Attackers may exploit subtleties in those features to effectively
bypass protection mechanisms.

Indeed, Zhu et at. [3], show how undisclosed or recently introduced features
may negate the security guarantees of PixelVault. Exploiting special purpose
registers, they are able to flush PixelVault instructions from the caches and
replace them with their own malicious code. Using recent changes in debugging
support, they are also able to stop a kernel execution and read the GPU registers,
effectively extracting the secret keys.
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