
Inari Listenmaa FDAT085 Spring 2017

Authorship attribution

1 Introduction

If you want to publish an anonymous or pseudonymous text, what can you do? Before
Internet, you could hide your handwriting and make sure you don’t leave fingerprints; then
just deliver your letter to a postbox and make sure no-one sees you. On the Internet, you
could e.g. post your comments using Tor (Dingledine et al. , 2004), to prevent anyone from
knowing your IP address. 1

Even if these privacy measures worked perfectly, they aren’t enough to protect your
anonymity. The content of the message is among the harder things to hide, especially if
you write pseudonymously on a regular basis. In this paper, we introduce the problem of
authorship attribution: how does it work, what can be identified—tweets, source code, for
instance—and if, or how, it can be circumvented.

2 Stylometry

2.1 Linguistic problem

Identifying an author is an old problem: criminal investigations, controversial political
documents, novels written under a pen name, and anything in between. Brennan et al.
(2012) mention early approaches such as average word length, vocabulary usage, sentence
structure, and function words. In an early study, Mosteller & Wallace (1963) analyse the
authorship of The Federalist Papers, and point out seemingly small things, such as one
suspected author preferring the word while, and another preferring whilst. The linguistic
theory behind these assumptions is that language is a set of choices, and people tend to be
consistent in their choices. Some choices are due to dialectal or social factors, and people use
different style in different contexts (instant messaging vs. scholarly essay), but this leaves
still a lot of mostly idiosyncratic variation. As explained by Patrick Juola, a computational
linguist specialised in stylometry2:

If you ask yourself where the salad fork is relative to the plate, you quickly
realize that it’s usually to the left of the plate. Or is it? It’s just as likely to be
“on” the left of the plate, “at” the left of the plate, or perhaps “to” the left SIDE
of the plate. Same fork, same position, and at least four different choices for
how to describe it, none of which correspond to any sociolinguistic or cognitive
variable with which I’m familiar.

If this theory is correct, then it means that authorship attribution should be possible
even in different genres of text. Conversely, if we can pinpoint the variation to concrete
words and syntactic patterns, then it should be possible to hide one’s authorship, either
by mimicking someone else, or opting to a random variant, or even possibly constructing a
neutral variant of language.

1Of course, you can still be identified from pretty much anything, like browser extensions or errors in
your computer clock (Murdoch, 2006).

2http://languagelog.ldc.upenn.edu/nll/?p=5315

1



Inari Listenmaa FDAT085 Spring 2017

2.2 Machine learning problem

Back when Mosteller & Wallace (1963) did their experiments, it took 3 years to analyse the
data. Nowadays we can process larger amounts of text, and use more, and more complex,
measures. The paradigm of machine learning is helpful: we don’t know beforehand which
features are discriminative, but we can try a huge amount of features, most of which would
be counterintuitive for humans to think of, and impractical (or impossible) to detect.

Classification We can pose authorship attribution as a classification problem or as a
clustering problem. Classification means that we have a set of candidate authors and an
unknown text, which we want to attribute to one of the authors. Clustering is more suitable
approach, if we have a large set of texts, such as forum posts by different usernames, and
we want to find out if some of the users are actually the same person.The classification task
can be two-class or multi-class: the former being “was it the suspect or someone else”, and
the latter “which one out of the suspect pool”. As intuitively expected, smaller suspect
pool leads to larger accuracy. However, even with an extremely large world, the methods
do better than random guessing: Abbasi & Chen (2008) report 30 % accuracy for a set of
100,000 authors.

Features In order to measure similarities between texts, the texts are reduced into feature
vectors. To give a small example, imagine we have the task of language recognition: given a
piece of text, output the most likely label in {English, French, Swedish}. Comparing against
a huge dictionary (including all inflected forms) would be slow, and not work for unknown
words. Instead, we assume that each language has a characteristic letter distribution. Hence,
we can reduce a text into a vector of letter counts. For instance, the text “the cat sat
on the mat” corresponds to the vector [#a=3, #b=0, #c=1,#d=0, #e=2 ... #t=5 ...

#ö=0]. Then we can compare this unknown vector to the vectors that contain average
letter distributions of the candidate languages, by simply calculating the angle between two
vectors.

There are, of course, a variety of features and more complex similarity metrics, but the
principle is the same: reduce something as abstract as “being in English” into something
that can be computed efficiently and unambiguously.

We return to the question of feature selection when presenting each paper.

3 Adversarial stylometry

So far we have dealt with honest data: the authors are not deliberately trying to hide
their identities. Some of these measures are easily detectable by humans too, for instance
synonyms and syntactical structure: if someone tends to write extremely long sentences and
use the word kerfuffle a lot, people will likely suspect them as an author of similarly written
anonymous letter. Brennan et al. (2012) ask the question: can we modify our writing and
fool stylometric tools? They experiment with three strategies, which are presented in the
following sections: obfuscation, imitation and machine translation.

3.1 Obfuscation and imitation

There were 45 test subjects, who provided 6500-word samples of formal text in their usual
writing style. In the first experiment, they were instructed to write a 500-word text, delib-

2



Inari Listenmaa FDAT085 Spring 2017

erately trying to hide their style. In the second one, they were instructed to write in the
style of Cormac McCarthy. The topics were chosen by the experimenters, and same for all
subjects: describing their neighbourhood and typical daily routines. The test subjects were
mostly college educated, but none was a professional writer.

The test was successful: the adversarial passages fooled all tested classifier methods,
which performed well for conventional methods. The accuracy dropped from 80-90 % (de-
pending on the suspect pool size) to below 20 %; in the obfuscation test, around random
change, and in the imitation scenario, worse than random.

The subjects did not receive any particular orders for the obfuscation task, and it was
conducted before the imitation task. The most common strategy was to write shorter
sentences, avoid specialised vocabulary or “fancy words”; in general, the Flesh-Kincaid
grade level was lower in the obfuscated passages.

3.2 Machine translation

Writing in someone else’s style is cognitively taxing, and hard to keep up, if one plans to
write multiple documents. Hence, Brennan et al. (2012) investigated machine translation as
an option: the author writes a text in their normal style, and then does a machine translation
round trip. In the paper, the authors try one-step translation English-German-English and
English-Japanese-English, and two-step translation, English-German-Japanese-English.

The experiments lowered the chances for identification, a but in practice the results were
not usable. Complex sentences come back garbled, which in a sense works for obfuscation
but not for communication. Simple sentences stay too faithful, and not obfuscated enough.
Only a small number sentences worked as expected.

The experiments were run in 2012, on two freely available programs, Google Translate
and Bing. Both systems at the time were based on statistical methods. In short, a statistical
MT system is trained on large corpora of bilingual aligned data: initially, the system gets
the aligned sentences “the cat sat on the mat” and “de kat zat op de mat”, and the system
will have to infer on its own the smaller chunks: that English “cat” corresponds to Dutch
“kat” with a certain probability in a certain context. For some words the correspondence
is very clear, like cats and mats, but for some words it depends a lot on the context: for
instance, the definite article is always “the” in English, but Dutch has two genders, and
thus the translation may be either “de” or “het”, depending which word follows.

At the time of writing, statistical MT was the only feasible method for wide-coverage
MT. Now, 5 years later, neural networks are more widely used in machine translation, and
it is possible that they could offer some improvements. An example is the notion of context:
statistical MT has a limited window of concrete words, directly before or after the word(s)
to be translated. In contrast, there are variants of neural MT which bypass this hard limit
of surrounding words.

Purely rule-based methods predate both of these methods by decades—simple dictionary-
based MT is old as computer itself, and has been successful in tasks that require high pre-
cision, but only need to cover a small domain. Given that rule-based MT is even more
deterministic than statistical, and an ideal machine translation round-trip should be the
identity function, we can safely rule out rule-based MT as an obfuscating tool.

3



Inari Listenmaa FDAT085 Spring 2017

Figure 1: Writeprints feature set

3.3 Features and classifiers

The study experiments with different classifier methods, and feature selection. The full
details are presented in the paper, here we only recap the most successful method: Support
Vector Machine classifier with a customised Writeprints (Abbasi & Chen, 2008) feature set.
The idea behind Writeprints is that each author may have a different feature vector. The
full set includes tens of thousands features, most of which are dependent on the documents
to classify, such as common misspellings. For this experiment, the authors used the subset
of 557 features that were all static.

4 Frontier paper I: Cross-domain authorship attribution

Does writing style stay consistent even in different genres? If we only have scientific papers
of an author, could we possible recognise their tweets?

Overdorf & Greenstadt (2016) report that baseline is very low: conventional stylometric
methods, which achieve 85 % accuracy for in-domain text, drop to a mere 35 % when
trained on one domain and tested on another. With some changes in the feature set and
classification algorithm, they are able to achieve 70 % accuracy. Cross-domain authorship
attribution is limited to closed suspect pool: whereas previous studies have tested 50-100
authors with moderate success, here the method loses a lot of accuracy after 10 authors.

4.1 Technical details

The study used a subset of Writeprints set; A naive approach of using only function words
does not improve the results from the baseline 35 %.

Distortion If we have text from known authors in both source and target domain, we
can model the distortion. For a human, this would be like a rule of thumb that “in Twitter,

4



Inari Listenmaa FDAT085 Spring 2017

people are using abbreviations”, and hence one should expect that an academic, who never
uses abbreviations in their scientific papers, may still do so in a tweet; so a human can learn
to ignore the intuition “this cannot be Professor Smith” when reading a tweet “where r u
ppl?”. For a machine learning method, distortion is defined as a function of feature vectors.
We take feature vectors of the same author in different genres, and apply an appropriate
distance measure: Overdorf & Greenstadt (2016) use Euclidean distance between the feature
vectors.

Finding the best combinations Better results are achieved by Recursive Feature Elim-
ination: running experiments repeatedly on a development corpus, to find the combination
of features that does the best in classifying the known cases. However, the authors report
that the most discriminating features for in-domain task are often among the most dis-
torted, and hence not good for cross-domain analysis. Applying distortion to the unknown
vectors results only in worse results. Hence, the authors conclude that feature selection
alone is not an effective method for cross-domain authorship attribution.

Changing the classifier The authors report better results when changing the classifier:
training with samples of both domains. Then, the classifier result will reflect more accurately
what separates the unknown sample from authors in both source and target. This means
that features that discriminate well regardless of genre, are weighted higher. As a difference
to specifying the feature set beforehand, this method is more flexible, adapting to different
instances.

5 Frontier paper II: Source code stylometry

An experiment by Caliskan-Islam et al. (2015) reveals that program code is also easy to
identify. Using data from Google Code Jam, where all the programmers completed the same
tasks, they are able to identify the author with 98 % accuracy for a set of 250 programmers,
and 94 % for 1,600 programmers. They had data from multiple years for 25 programmers;
training with old code and testing with new code resulted in similar accuracy, 98.4 %. Of
course, the sample size was smaller, so it is possible that the results would drop for a larger
pool. Furthermore, the scenario was easier than reality, where the available code could be
in a different programming language, and the tasks are more varied.

5.1 Technical details

The authors used a random forest classifier. Random forests consist of decision trees, each
using slightly different features and values: one tree really values some features like whether
the programmer starts a {-bracket on a newline, and may split the target set into “either-
Alice-or-Bob” and “someone-else” (not Alice or Bob) based on those newlines. Another
looks at some other features, and makes a split “either-Alice-or-Carol” and “someone-else”
based on, say, the programmer’s tendency to use nested list comprehensions. Individually
these decision trees would make bad decisions, but during the training, they are learning
the best features and weights, and together they reach high accuracy.

The authors identify 928 features that are most informative. They can be divided in
three classes:

1. Layout features, e.g.

5



Inari Listenmaa FDAT085 Spring 2017

• whitespace

• placement of {}

2. Lexical features; e.g.

• term frequency of word n-grams

• average line length

• average number of parameters per function

3. Syntactic features; e.g.

• depth, nesting

• term frequency of AST node n-grams

Layout features contribute around 1 %, lexical and syntactic contribute the remaining
44–55 %. The full set of features can be found in the paper. In contrast to previous work
in code stylometry, this study uses syntactic features extensively. For incomplete code
snippets, they use a fuzzy parser to obtain the AST.

5.2 Obfuscation

Due to the heavy use of syntactic features, simple obfuscators don’t work well to hide
the author: they only make the code unreadable by humans. This would be unusable for
open-source scenarios, because the code is effectively unmaintainable. More sophisticated
obfuscator (Tigress) succeeds better, but makes the program 9 times slower, so this is
not a viable alternative either. The authors suggest future research on creating a neutral
programming style.

References

Abbasi, Ahmed, & Chen, Hsinchun. 2008. Writeprints: A Stylometric Approach to Identity-
level Identification and Similarity Detection in Cyberspace. ACM Trans. Inf. Syst., 26(2),
7:1–7:29.

Brennan, Michael, Afroz, Sadia, & Greenstadt, Rachel. 2012. Adversarial Stylometry:
Circumventing Authorship Recognition to Preserve Privacy and Anonymity. In: ACM
Transactions on Information and System Security.

Caliskan-Islam, Aylin, Harang, Richard, Liu, Andrew, Narayanan, Arvind, Voss, Clare,
Yamaguchi, Fabian, & Greenstadt, Rachel. 2015. De-anonymizing Programmers via Code
Stylometry. Pages 255–270 of: Proceedings of the 24th USENIX Conference on Security
Symposium. SEC’15. Berkeley, CA, USA: USENIX Association.

Dingledine, Roger, Mathewson, Nick, & Syverson, Paul. 2004 (August). Tor: The Second-
Generation Onion Router. In: Proceedings of the 13th USENIX Security Symposium.

Mosteller, Frederick, & Wallace, David L. 1963. Inference in an Authorship Problem.
Journal of the American Statistical Association, 58(302), 275–309.

6



Inari Listenmaa FDAT085 Spring 2017

Murdoch, Steven J. 2006. Hot or not: Revealing hidden services by their clock skew. Pages
27–36 of: In 13th ACM Conference on Computer and Communications Security (CCS
2006. ACM Press.

Overdorf, Rebekah, & Greenstadt, Rachel. 2016. Blogs, Twitter Feeds, and Reddit Com-
ments: Cross-domain Authorship Attribution. PoPETs, 2016(3), 155–171.

7


	Introduction
	Stylometry
	Linguistic problem
	Machine learning problem

	Adversarial stylometry
	Obfuscation and imitation
	Machine translation
	Features and classifiers

	Frontier paper I: Cross-domain authorship attribution
	Technical details

	Frontier paper II: Source code stylometry
	Technical details
	Obfuscation


