
Secure Architecture Design Automation

Katja Tuma1

University of Gothenburg, Sweden

Abstract. Architectural threat analysis is a pillar of security by design
and is routinely performed in companies. To this day, companies per-
form threat analysis using techniques like STRIDE, where security ex-
perts manually identify and assess security threats. Techniques such as
STRIDE aim towards maximizing the completeness of discovered threats.
This leads to identifying more threats than can be addressed (due to
budget constraints). However, at that point analysts have spent precious
time on low-prioritized threats already, which is inefficient. Therefore,
there is a need for a more efficient use of the allocated resources. Be-
cause secure architectures consider security as a cross-cutting concern,
testing, maintenance and compliance checking provide continuous feed-
back on system state. Automation of architectural analysis can not only
reduce the manual labor, but also cater to late-stage security related
activities. This short paper discusses two recent attempts to automate
architectural threat analysis and discusses their limitations.

Keywords: Architectural threat analysis, Automation, Security threats

1 Introduction

Security-by-design is a practice within organizations which enables planning for
security in early phases of the product life-cycle. Our experience in the indus-
try reveals that experts have little time and resources available to get the job
done. Designing for security begins with a disciplinary regard to best practices,
security standards [13] [15] [14] [19] and derived security policies. As a result
several secure design notations have emerged in the past [9]. Some of these no-
tations have emerged in the model-driven development domain. A large body
of knowledge has shown that security-design models can be used as a basis for
generating systems and their architectures. If models are extended with secu-
rity semantics, formal signatures can be used to reason around security-related
properties of systems. Security policy enforcement in the model-driven domain
has been researched by Basin et al. [5].

However, as security issues progressed apace with technological and organi-
zational innovations, complementary approaches emerged to strengthening se-
cure design practices. Threat analysis is a method for identifying, analyzing
and prioritizing threats of early software architectural models. STRIDE is most
commonly used to this aim. This method’s systematicity and repetitiveness re-
sults in a so called threat explosion, where too many unimportant threats are



2

identified and analyzed [20]. This results in a waste of time for the analyst,
hence there is a need for more focused approaches to emerge. Even though, this
technique is not formalized, a variety of tool support exists (most commonly
used is Microsoft Threat Modeling Tool [1]). Schaad et al. [21] implemented a
tool for light weight semi-automated security analysis of architectural diagrams,
adopting the STRIDE technique. Apart from STRIDE there are other meth-
ods used to perform threat analysis. In particular, we observed a significant
amount of semi-automated approaches for attack-centric methods. Closely re-
lated to goal-oriented requirements engineering methods, architectural analysis
has been studied in the context of automating attack tree [18] [10], graph [22] and
paths [11] generation. Aforementioned approaches aim toward a static architec-
tural analysis, where the implemented solution is not the main focus. For a more
complete list of attack and defense modeling methods, we refer the reader to the
work of Kordy et al. [17]. Complementary to architectural security patterns, so
called problem frames [16] [6] [12] and treat patterns have emerged. Abe et al. [2]
proposed to model negative scenarios (as defined by the CC standard [13]) in a
semi-automated way with threat patterns and use them during business process
modeling.

We continue to describe two recent initiatives to automate architectural anal-
ysis and discuss them briefly.

2 Automated Software Architecture Security Risk
Analysis using Formalized Signatures

Almorsy et al. [4] introduce a risk-centric architectural analysis approach. Their
approach, accompanied by a tool, supports a security risk analysis by means
of formalized signatures of security scenarios and metrics. Authors develop a
prototype software tool using the Eclipse Modeling Framework (EMF), which
takes as input a (sub)set of design, architecture and code level artifacts. Using
formalized signatures defined with the Object Constraint Language (OCL), the
tool is able to identify signature matches in the architectural model. In addition
to formalizing attack scenarios, the prototype tool also formalizes signatures of a
set of security metrics (attack surface, fail securely, compartmentalization, least
privilege, defense in depth, isolation metric). The authors have experimentally
evaluated their approach on several open-source applications which resulted in a
number of discovered flaws and metrics (not shown here), as shown in Figure 1a.
Based on the evaluated signatures for attack scenarios and security metrics, the
authors implement a final trade-off analysis. This makes it possible to compare
the risk levels for several architectural models at a time.

The main disadvantage of the developed approach is that the correctness
of the analysis depends heavily on the formalized signatures. In consequence,
such rules need to be tailored for each system by security experts. What is
more, despite the mention of the possibility to limit the type and quantity of
input artifacts, it seems that in this case, the signatures would not have enough
information to be evaluated. Nevertheless, authors’ evaluation shows promising



3

(a) Average precision, recall and F-measure for dis-
covering flaws with OCL signatures.

(b) Detected threats and vulnerabilities related to CWE entries and
supporting rules.

Fig. 1. Presented results from selected papers.

results in reverse engineering and analyzing the architecture of several open
source applications.

3 Automatically Extracting Threats from Extended Data
Flow Diagrams

J. Berger et al. [8] have recently proposed a new approach for an automated
architectural risk analysis. Their work is supported by a tool which automati-
cally extracts architectural vulnerabilities based on an extended DFD (EDFD)
notation and proposes known mitigations. The EDFD contains necessary infor-
mation about the communication channels and asset source/target. The obtained
threat model is created with the use of formalized rules, which are build based
on information obtained from lowering EDFDs to simple graphs. Initially, a se-
curity expert creates a catalog of security-related design patterns. Additionally,



4

the expert defines the knowledge base (rules for detecting flaws) and creates an
EDFD schema. Next, the domain expert uses the pattern catalog and creates
an instance of the EDFD schema. Finally, the developed rule checker uses the
predefined rules to find vulnerabilities in the instantiated EDFD and matches
them with known mitigations from vulnerability repositories (CAPEC, CWE).
Evaluation results show that they were indeed able to find certain threats 1b,
however a more sound evaluation approach would be more insightful.

The authors recognize the need to limit the time spent by security experts and
therefore separate the responsibilities to include the expert only when needed.
However, the knowledge base rules are used to discover only cataloged vulner-
abilities, as opposed to finding all possible threats. Moreover, their approach
does not handle threat explosion problem. Because of these reasons, additional
effort by security experts is needed to verify the analysis after the threat model
is built.

4 Discussion and concluding remarks

In this short paper we briefly described and discussed two novel approaches
for automated architectural analysis in the design phase of the SDL. With the
changing trends and architectural styles (such as microservice architectures),
there is a need for an efficient way to model and analyze security in the design
phase. In order to do so, more information needs to be obtained from the ar-
chitectural model (as was shown by J. Berger et al.). However, a large number
of secure design automation approaches are only semi-automated, leaving the
difficult task of finding relevant threats to the analysts. Moreover, the indus-
try is often skeptical with adopting such approaches, as automation can also
be counter-productive, if it steers the analyst in a wrong direction. In addition,
there is a lack of understanding the level of threat granularity (i.e. when does
the analysis stop?). We plan to further investigate the matter, especially in con-
nection with defining rules for compliance checking [3], [7] (feedback loop to the
implemented architecture).

References

1. Sustainable Application Security microsofts new threat modeling tool.
https://blog.secodis.com/2016/07/06/microsofts-new-threat-modeling-tool/,
accessed: 2017-05-15

2. Abe, T., Hayashi, S., Saeki, M.: Modeling security threat patterns to derive neg-
ative scenarios. In: Software Engineering Conference (APSEC), 2013 20th Asia-
Pacific. vol. 1, pp. 58–66. IEEE (2013)

3. Abi-Antoun, M., Wang, D., Torr, P.: Checking threat modeling data flow diagrams
for implementation conformance and security. In: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering. pp. 393–
396. ACM (2007)



5

4. Almorsy, M., Grundy, J., Ibrahim, A.S.: Automated software architecture security
risk analysis using formalized signatures. In: Proceedings of the 2013 International
Conference on Software Engineering. pp. 662–671. IEEE Press (2013)

5. Basin, D., Clavel, M., Doser, J., Egea, M.: Automated analysis of security-design
models. Information and Software Technology 51(5), 815–831 (2009)

6. Beckers, K., Hatebur, D., Heisel, M.: A problem-based threat analysis in compli-
ance with common criteria. In: Availability, Reliability and Security (ARES), 2013
Eighth International Conference on. pp. 111–120. IEEE (2013)

7. Berger, B.J., Sohr, K., Koschke, R.: Extracting and analyzing the implemented se-
curity architecture of business applications. In: Software Maintenance and Reengi-
neering (CSMR), 2013 17th European Conference on. pp. 285–294. IEEE (2013)

8. Berger, B.J., Sohr, K., Koschke, R.: Automatically extracting threats from ex-
tended data flow diagrams. In: International Symposium on Engineering Secure
Software and Systems. pp. 56–71. Springer (2016)

9. van den Berghe, A., Scandariato, R., Yskout, K., Joosen, W.: Design notations for
secure software: a systematic literature review. Software & Systems Modeling pp.
1–23 (2015)

10. Birkholz, H., Edelkamp, S., Junge, F., Sohr, K.: Efficient automated generation of
attack trees from vulnerability databases. In: Working Notes for the 2010 AAAI
Workshop on Intelligent Security (SecArt). pp. 47–55 (2010)

11. Chen, Y., Boehm, B., Sheppard, L.: Value driven security threat modeling based on
attack path analysis. In: System Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on. pp. 280a–280a. IEEE (2007)

12. Hatebur, D., Heisel, M.: Problem frames and architectures for security problems.
In: International Conference on Computer Safety, Reliability, and Security. pp.
390–404. Springer (2005)

13. ISO/IEC common criteria for information security evaluation. Standard, Interna-
tional Organization for Standardization (ISO) and Enternational Elecrotechnical
Commission (IEC) (2009)

14. ISO/IEC Information technology-security techniques-Information security man-
agement systems-Overview and Vocabulary. Standard, International Organization
for Standardization (ISO) and Enternational Elecrotechnical Commission (IEC)
(2009)

15. ISO/IEC Information technology-security techniques-Information security man-
agement systems-Requirements. Standard, International Organization for Stan-
dardization (ISO) and Enternational Elecrotechnical Commission (IEC) (2005)

16. Jackson, M.: Problem frames: analysing and structuring software development
problems. Addison-Wesley (2001)

17. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: Dag-based attack and defense
modeling: Dont miss the forest for the attack trees. Computer science review 13,
1–38 (2014)

18. Li, T., Paja, E., Mylopoulos, J., Horkoff, J., Beckers, K.: Security attack analysis
using attack patterns. In: Research Challenges in Information Science (RCIS), 2016
IEEE Tenth International Conference on. pp. 1–13. IEEE (2016)

19. Security and Privacy Controls for Federal Information Systems and Organizations.
Standard, National Institute of Standards and Technology (NIST)) (2013)

20. Scandariato, R., Wuyts, K., Joosen, W.: A descriptive study of microsofts threat
modeling technique. Requirements Engineering 20(2), 163–180 (2015)

21. Schaad, A., Borozdin, M.: Tam 2: automated threat analysis. In: Proceedings of
the 27th Annual ACM Symposium on Applied Computing. pp. 1103–1108. ACM
(2012)



6

22. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation
and analysis of attack graphs. In: Security and privacy, 2002. Proceedings. 2002
IEEE Symposium on. pp. 273–284. IEEE (2002)


