
Differentially Private Programming

Marco Vassena

Chalmers University
vassena@chalmers.se

Abstract. Data analysts mine large databases and crunch data in order
to extrapolate statistics and interesting patterns. However people’s pri-
vacy is jeopardized in the process, whenever a database contains private
data. Differential privacy has emerged recently as an appealing rigourous
definition of privacy, which protects individuals in a database, while al-
lowing data analysts to learn facts about the underling population, by
adding noise to queries. Unfortunately, proving differential privacy of
programs is a difficult and error-prone task. In this paper, we survey
the state-of-the-art applications of programming languages techniques
to develop principled approaches and tool support to ease the analysis
and verification of probabilistic differential private programs.

1 Introduction

Our society has gone through a digitalization process in the past few decades,
which has produced large amounts of data, that have been collected and stored
in databases over the years. Data analysts dig into this vast source of informa-
tion in order to discover useful information, extrapolate patterns and statistics
and support decision-making processes. Unfortunately, data analysis puts peo-
ple’s privacy at stake, since archives often contain private personal data. How to
process and analyze large amounts of personal data, while respecting people’s
privacy is an intriguing open research problem. Differential privacy has emerged
recently as an appealing rigourous definition of privacy, which protects individ-
uals in a database, and allows to learn facts about the underling population, by
adding noise to queries. In this paper, we survey the state-of-the-art applica-
tions of programming languages techniques to differential privacy, whose goal is
to develop principled approaches and tool support for probabilistic differential
private programming, in order to make privacy-preserving data-analysis feasible.

2 Background

Privacy is hard to guarantee, when lots of rich data is independently available.
A number of naive approaches to the problem revealed to be shockingly broken.
For instance, data anonymization is vulnerable to linkage attacks, i.e., matching
anonymous records with auxiliary non-anonymous data from a public data-set
allows identification [7, 5]. Collective queries, i.e., queries over large sets, are not



safe either as they enable differencing attack, while query auditing, i.e., refusing
to reply to a query that would compromise privacy in combination with data
queried previously, can also be disclosive. Furthermore deciding whether a query
constitutes a privacy breach may also be undecidable for a rich query language.
These subtleties indicate the need for a more formal treatment of privacy.

2.1 Differential Privacy

Informally, differential privacy guarantees that the participation of an individual
in a statistical database, e.g., a survey, shall not significantly affect him or her
in any way, therefore encouraging participation and data collection.

More formally, (ε, δ)-differential privacy is property of a randomized algo-
rithm that has access to a database. Parameter ε indicates the privacy loss, while
parameter δ determines the accuracy of the algorithm. Intuitively, differential
privacy ensures that the algorithm will behave similarly on any pair of adjacent
databases, i.e., databases that differ only in a row, i.e., the “individual” whose
privacy we want to protect. One way to make an algorithm differentially private
is to inject noise from some probability distribution in the result of queries. The
shape and the amount of noise needed depends on the privacy loss1, i.e., param-
eter ε, at the expense of the precision of the algorithm, i.e., parameter δ. For
instance, the Laplacian mechanism injects noise from the Laplacian distribution
on the result of numeric queries, while the exponential mechanism, perturbs dis-
crete queries. Crucially, depending on what the algorithm wants to achieve, noise
injection can be coordinated, resulting in better performances, in terms of ε and
δ—something that it is in general hard, tedious and error-prone. In [8, 6, 3, 2, 1],
programming languages techniques have been employed to simplify the process
of formally verifying and composing differentially private programs.

3 Distance Makes the Types Grow Stronger

In their paper, Reed and Pierce present a functional calculus2, which ensures
that well-typed programs are differentially private. The type-system of the cal-
culus tracks function sensitivity, i.e., a measure, which gives an upper bound on
how much a function can magnify the distance between similar inputs, which
determines proportionally the noise required to make a query differentially pri-
vate.

The notion of distance between values is type-based. The type-system in-
cludes linear types [8], a special kind of types that model terms as consumable
resources—a fundamental aspect to correctly capture sensitivity. For example
the special arrow type, i.e., (, guarantees that the argument of the function is
used at most once, which is sufficient to ensure that the function has sensitivity
1. In particular, in order to safely share the output of c-sensitive functions, the

1 Alternatively, it is also possible to compute the privacy-loss from the algorithm. In
this case ε is referred as budget.

2 Implemented as Fuzz http://privacy.cis.upenn.edu/software.html

http://privacy.cis.upenn.edu/software.html


calculus provides the type of additive conjunction, i.e., 〈t1, t2〉 : τ1 & τ2, which
provides any of t1 or t2, but not both. The special type !r τ allows to reuse a
term of type τ up to r times, for any number r , including ∞, at the price of
multiplying the scaling factor r to the distance metric.

Recursive types provides the language supports with standard functional pro-
gramming data-types, such as natural numbers and lists and recursive patterns,
i.e., a fixpoint combinator Y , map and fold . The calculus provides as primitives
sets and finite maps, which are useful to model databases and relational algebra
operations respectively, and equip them with appropriate distance metrics. By
extending the calculus with the probability monad, i.e., probabilistic computa-
tions, and defining a suitable distance measure, the authors capture the type
of differential private computations within the language. Guarantees about dif-
ferential privacy of programs with this type follow directly from the soundness
of the type-system. The paper concludes with a few examples of classic differ-
entially private algorithms that can be expressed in their language, including
histogram queries and k -means.

4 State of the Art

The type-system of Fuzz is limited to types with constant sensitivity annotations,
which must be statically known [8]. For example, Fuzz supports a k -means clus-
tering algorithm for a fixed number of iterations, i.e., k = 1, 2, 3..., but does not
allow a unique algorithm that works for any k , e.g., an adaptive version of the
algorithm that, depending on the data, stops when a suitable k is found.

DFuzz lifts these restrictions by providing dependent types, a form of types
which may depend on run-time values [6]. Even though more expressive, DFuzz
is a significantly more complex language, which includes simple types, linear
types, a kind system, a probability type layer and a sub-typing relation, which
requires an external constraint solver to type-check.

HOARe2 is a relational refinement type system for high-order probabilistic
programs [2]. Refinement types are an expressive type discipline that captures
fine-grained properties of computations by enriching types with assertions, about
their values.

Proving differential privacy for certain algorithms requires various mathemat-
ical techniques, that are beyond the reach of type-systems and constraint solvers.
CertiPriv is a machine-checked framework for reasoning about differential pri-
vacy built on top of the Coq proof assistant from first principles—for example,
it can verify the correctness of the Laplacian and Exponential mechanisms too.

5 Differentially Private Bayesian Programming

This work combines advances in probabilistic programming, relational refine-
ment type systems and differential privacy and presents PrivInfer, a framework
that extends HOARe2 with symbolic probability distribution, to support prov-
ably differentially private Bayesian machine learning algorithms [1].



Probabilistic programming is concerned with the design of programming lan-
guages as tools for machine learning. For example, probabilistic programming
allows to describe a probabilistic model, its parameters and the data observa-
tions as a program, which is then used to perform inference. Bayesian inference
is a statistical method that updates the probability for a hypothesis as more ev-
idence, i.e., observations, becomes available, with many applications, including
machine learning.

Unfortunately, when the observation include private data, releasing the pos-
terior distribution directly represents a privacy violation [4, 9, 10]. In fact, de-
spite Bayesian inference outputs a probability distribution, the inference process
is completely deterministic, therefore it reveals private information. Differential
privacy requires to inject randomness in the process, but this can be done in
different ways, on the input data, on the parameters, or on the distribution
itself. Then, in order to reason about differential privacy in this setting, the
paper explores f -divergence, a class of distance measures on probability distri-
butions, which are given a relational interpretation based on relational lifting.
PrivInfer distinguishes between different kinds of distributions syntactically: the
inference process yields symbolic distributions, while actual distributions repre-
sent differentially private probabilistic computations. The paper concludes with
three different differential privacy conditions which can be formally verified by
PrivInfer, depending on how noise is injected.

6 Conclusion

Differential privacy is an appealing desirable property that formally establishes
what privacy means in the context of data-analysis and encourages users to
participate in statistical databases. Unfortunately, proving that algorithms are
differential private is a difficult and error-prone task that calls for principled
approaches and tool support. This paper surveys the state-of-the-art program-
ming languages techniques that support systematic analysis and verification
of privacy-preserving data-analysis programs, including machine learning algo-
rithms. While this research area is still in its early stages, these papers show
initial promising results.



Bibliography

[1] Gilles Barthe, Gian Pietro Farina, Marco Gaboardi, Emilio Jesus Gallego
Arias, Andy Gordon, Justin Hsu, and Pierre-Yves Strub. Differentially
private bayesian programming. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages
68–79, New York, NY, USA, 2016. ACM.

[2] Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu,
Aaron Roth, and Pierre-Yves Strub. Higher-order approximate relational
refinement types for mechanism design and differential privacy. SIGPLAN
Not., 50(1):55–68, January 2015.

[3] Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago
Zanella-Béguelin. Probabilistic relational reasoning for differential privacy.
ACM Trans. Program. Lang. Syst., 35(3):9:1–9:49, November 2013.

[4] Christos Dimitrakakis, Blaine Nelson, Aikaterini Mitrokotsa, and
Benjamin I. P. Rubinstein. Robust and Private Bayesian Inference, pages
291–305. Springer International Publishing, Cham, 2014.

[5] Irit Dinur and Kobbi Nissim. Revealing information while preserving
privacy. In Proceedings of the Twenty-second ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’03, pages 202–210, New York, NY, USA, 2003. ACM.

[6] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce. Linear dependent types for differential privacy.
SIGPLAN Not., 48(1):357–370, January 2013.

[7] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of
large sparse datasets. In Proceedings of the 2008 IEEE Symposium on
Security and Privacy, SP ’08, pages 111–125, Washington, DC, USA,
2008. IEEE Computer Society.

[8] Jason Reed and Benjamin C. Pierce. Distance makes the types grow
stronger: A calculus for differential privacy. In Proceedings of the 15th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’10, pages 157–168, New York, NY, USA, 2010. ACM.

[9] Oliver Williams and Frank Mcsherry. Probabilistic inference and
differential privacy. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems 23, pages 2451–2459. Curran Associates, Inc., 2010.

[10] Zuhe Zhang, Benjamin I. P. Rubinstein, and Christos Dimitrakakis. On
the differential privacy of bayesian inference. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages
2365–2371. AAAI Press, 2016.


	Differentially Private Programming
	Marco Vassena
	Introduction
	Background
	Differential Privacy

	Distance Makes the Types Grow Stronger
	State of the Art
	Differentially Private Bayesian Programming
	Conclusion



