
On garbled circuits and recent improvements

Per Hallgren

1 Introduction to garbled circuits

Garbled Circuits is a technique to compute a function based on inputs from
multiple parties without disclosing any data that correlated to the user’s input,
except for the output of the function. It has been around and under development
for about 30 years, but has only recently seen enough performance improvements
to be feasible for real applications. We detail the main ideas of the technique,
and highlight two recent developments that lead to performance improvements.
The first such improvement, TinyGarble, shows how to better utilize existing op-
timization tools used in computer architecture. The second improvement, called
GraphSC, lends support to secure computation of graph algorithms.

Before going further into the details about garbled circuits, let us take a mo-
ment to understand the concept of secure function evaluation. We focus mainly
on the two-party case, and happily denote the two parties Alice and Bob. Alice
and Bob both have some secret data, that they under no circumstances want
to disclose to the other party. A common example is the Millionaires Problem,
where Alice and Bob want to know which of them is the wealthiest. However,
they do not want to tell the other the exact amount they have. Let a and b
be the amount in Alice’s and Bob’s bank account (the amount is positive and
without decimals, a, b ∈ N), respectively. What they want to achieve is that they
both learn the output of the function f : N×N→ {true, false} applied to their
inputs, where f(x, y) = x < y. They want to securely evaluate this function,
such that their inputs are kept private, and such that it is not possible to cheat.

A solution to secure function evaluation (SFE) was first proposed by Andrew
Yao [9], in what is today known as garbled circuits. There are currently three
main tracks that achieve SFE, homomorphic encryption [3], secret sharing [7],
and garbled circuits.

1.1 Yao’s construction

AND

w0

w1w2

w4

w3

AND

Fig. 1. Combinatorial circuit

The construction by Andrew Yao [9] was the
first solution to SFE, and works for two par-
ties in the presence of semi-honest attackers.
However, the initial paper is very theoretical,
and it lacks a lot of the more descriptive ter-
minology that makes garbled circuits easier to
reason about in modern literature; the first garbled circuit was implemented 18
years after Yao’s paper [5]. A good introduction to the problem is given by Lin-
dell and Pinkas [4], we will follow their notation closely. In essence, a garbled

circuit is a normal boolean circuit, but with an “encrypted truth table”. To
show what this means, we will walk through the construction using the exam-
ple shown in Figure 1, which is a combinatorial circuit for the boolean formula
f(w0, w1, w2) = w0 ∧w1 ∧w2. Normally, the truth table for the respective wires
would be as shown in Table 1 (with w0, w1, and w2 determined from the input).

Table 1. Truth table
for w3 and w4

w1 w2 w3

0 0 0

0 1 0

1 0 0

1 1 1

w3 w0 w4

0 0 0

0 1 0

1 0 0

1 1 1

Table 2. Gabled truth table for w3 and w4

Label w1 w2 w3

G0
0 = E(w0

1 , E(w0
2 , w0

3))

G0
1 = E(w0

1 , E(w1
2 , w0

3))

G0
2 = E(w1

1 , E(w0
2 , w0

3))

G0
3 = E(w1

1 , E(w1
2 , w1

3))

Label w0 w3 w4

G1
0 = E(w0

0 , E(w0
3 , w0

4))

G1
1 = E(w0

0 , E(w1
3 , w0

4))

G1
2 = E(w1

0 , E(w0
3 , w0

4))

G1
3 = E(w1

0 , E(w1
3 , w1

4))

Instead, a “garbled” truth table is used, as shown in Table 2. The output of
a gate in the garbled circuit is calculated by decrypting a gate label using the
value on the two input wires as decryption keys (where superscript references a
gate, and a subscript an output of that gate, G1

2 is the third output of the second
gate). The value of a wire should be viewed symbolically such that the wire label
w0

1 represents a 0 on the wire w1, and similarly w1
1 represents a 1. Concretely,

the wires of the garbled circuit will hold decryption keys.
Now, let’s work through an instance of Yao’s protocol for when Alice and

Bob wants to compute f(y0, y1, x0), when Alice has x0 and Bob holds y0, y1 (in
Figure 1, w0 = y0, w1 = y1 and w2 = x0). Alice will create the garbled circuit
represented as the two gate labels and all wire labels, send the circuit to Bob,
who will evaluate it. Recall that the goal is that Alice learns y0 ∧ y1 ∧ x0, which
means that she will learn that all values are true or if one is false. Note that
the result being false does not leak which of Bob’s inputs was false.

To evaluate the circuit, Bob needs to know the values of the input wires.
Given the gate labels and the wire labels of the input wires, Bob can first decrypt
w3 using w1 and w2, and then use w0 and w3 to find w4, which is the output.
However, he will be doing this without knowing whether the value of w2 is w0

2

or w1
2 (as this is Alice’s input). Thus, he will need to decrypt all of the gate

labels of the gate (e.g. D(w1, D(w2, G
0
i)) for i ∈ {0, 1, 2, 3}), and see which one

produces a “correct decryption” – there should be only one such.
Alice generates all of the keys used in the garbled circuit, and as such she

can send the correct wire label for her inputs (if x0 = 0, she sends w0
2, etc.). She

also generates the wire labels for Bob’s inputs, which is more troublesome. If she
sends both w0

i and w1
i for each of Bob’s input i, bob can compute the formula

for any input he chooses, which violates the privacy of Alice. Likewise, Bob can
not tell Alice which one to use as this compromises the privacy of Bob. Thus, to
select the correct input wire for Bob’s inputs, they use an interactive protocol
for oblivious transfer.

In short, Yao’s construction consists of two core building blocks; it requires
a semantically secure encryption scheme using which you can detect invalid

2

encryptions and an oblivious transfer protocol. Oblivious transfer, is a protocol
that let’s one party choose one out of two of the other parties inputs. More
precisely, Alice holds x0 and x1, and Bob holds a bit b. The goal is that Bob
chooses either x0 or x1 without learning the other, and Alice doesn’t learn b.
After the protocol, Bob learns xb, and nobody learns anything about the other
inputs. Concretely for us, Bob’s input wire is w2 for which he knows the correct
bit b ∈ {0, 1}, and Alice thus has two wire labels w0

2 and w1
2, and using OT

allows Bob to learn wb
2 without disclosing any additional information.

Encryption Scheme and Oblivious Transfer There are a lot of clever solu-
tions to find a good encryption scheme to use for garbled circuits. Most efficient
solutions use AES to be able to use the on-chip operations exposed through the
Intel NI instruction set. One of the most straight-forward solutions is to use
private keys for all wires, and to publish the public keys. Then, after decrypting,
Bob can check if the resulting bit string is a private-key matching any of the
publicized public keys.

The last piece we need to construct a garbled circuit is now a concrete obliv-
ious transfer protocol. “The Simplest Protocol for Oblivious Transfer” was pub-
lished in LatinCrypt 2015 [2], and it is indeed very simple. The protocol builds
upon the Diffie-Hellman key exchange, recall that this works using a generator
of a group g, where Alice sends to Bob X = gx, for which Bob replies with
Y = gy. x and y becomes Alice’s and Bob’s private keys, respectively, and X,Y
their public keys. Now, they can both compute gxy, which commonly is hashed
and used as the key in a block cipher, where Alice computes k = H(Y x) and
Bob k = H(Xy) to arrive at the same key. We now tweak this protocol to use
it for OT, where Alice has two secrets and Bob has a choice bit b. Alice sends
X to Bob as in the traditional protocol. Bob now replies with Y if b = 0, and
XY otherwise (this gives no additional data to Alice as compared to normal
DH). Alice now computes two keys to use in a symmetric encryption scheme,
k0 = H(Y x) and k1 = H((Y X−1)x), and she sends two ciphertexts to Bob
E(k0,M0), E(k1,M1). Only one of k0 or k1 can be computed by Bob, but not
both, and thus he learns either M0 or M1, without learning the other.

2 Frontier Paper One – TinyGarble

TinyGable[8] is a compiler to enables garbled circuits to be represented as se-
quential circuits as well as combinatorial circuits as described above. A combi-
natorial circuit has the shape of a tree, where a sequential circuit can contain
cycles. The traditional combinatorial garbled circuits are stateless, whereas a
sequential circuit can make use of memory elements.

One of the key contribution of this work is that it enables garbled circuits
to make use of the well-matured tooling that exists for hardware developers.
Languages used by the hardware industry such as Verilog and VHDL enjoy
many optimizations by tool support, rather than forcing the programmer to
tweak the code for performance. Prior to TinyGarble, garbled circuits could not

3

make use of the full range of such hardware synthesis tools, as they may optimize
a combinatorial circuit into a more compact sequential version.

The next step taken in this work, going from a garbled combinatorial circuit,
to a garbled sequential circuit, is of course a garbled ALU from which they con-
struct a garbled processor. One may ask why we would need garbled processor.
Such a construction is called for in the case that the function to be evaluated
needs to remain private, e.g. if Alice holds a proprietary algorithm, which she
will allow Bob to run using his inputs. In essence, Bob will be allowed to set the
initial state of the RAM, and read the final state of (some part of) the memory,
while Alice controls the instruction ROM.

3 Frontier Paper Two – GraphSC

The authors of GraphSC [6] present a framework for parallel secure computa-
tions compatible with the ObliVM-GC programming language. The idea behind
GraphSC is to support graph algorithms, which are well-suited for data mining
and machine learning. The GraphSC framework uses data-augmented directed
graphs (where both vertices and edges may store data). GraphSC uses the same
programming paradigm as Pregel/GraphLab, where an algorithm is split into
the three components scatter, gather, and apply, which serve to split an algo-
rithm into well-defined and independent ”chunks”, similarly to the MapReduce
methods map and reduce.

The model is that of two cloud providers with large datasets that want to
jointly compute something on their data, while of course the data of each provider
must remain secret to the other. One example could be two movie databases who
want to compute joint rankings of reviews, another where a single cloud provider
partitions it’s data in order to be resilient towards advanced persistent threats.

The authors define data-oblivious algorithms for the three methods scatter,
gather and apply. A data-oblivious algorithm is an algorithm where data access
patterns are independent of the input data, such that the algorithm doesn’t
branch based on input data, doesn’t index an array using input data, etc. Show-
ing that an oblivious algorithm is easily converted to a secure algorithm (i.e.
can be run in a GC framework), they are able to parallelize secure computations
to a very large degree, and are able to show that the framework scales to large
computing clusters both on a local area network, and across distant data centers.

Towards secure computations, the main contribution of the paper is the re-
alization that oblivious algorithms can be turned into secure algorithms. For a
data-oblivious algorithm, each processor would be assigned a ”chunk” of work
according to the scatter-gather-apply paradigm. Since data access patterns are
independent of the input data, an attacker may learn nothing from observing
what parts of the memory is accessed. However, an adversary can of course read
the data, both in registers in the processor and from memory. To prevent this,
garbled circuits is used together with a secret-shared memory. One processor in
the oblivious model becomes a garbler-evaluator pair in SFE. The memory of
the oblivious model is replaced by a secret-shared memory in the secure model.

4

References

1. 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015. IEEE Computer Society, 2015.

2. T. Chou and C. Orlandi. The simplest protocol for oblivious transfer. In K. E. Lauter
and F. Rodŕıguez-Henŕıquez, editors, Progress in Cryptology - LATINCRYPT 2015
- 4th International Conference on Cryptology and Information Security in Latin
America, Guadalajara, Mexico, August 23-26, 2015, Proceedings, volume 9230 of
Lecture Notes in Computer Science, pages 40–58. Springer, 2015.

3. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178. ACM,
2009.

4. Y. Lindell and B. Pinkas. A proof of yao’s protocol for secure two-party computation.
Electronic Colloquium on Computational Complexity (ECCC), (063), 2004.

5. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party com-
putation system. In M. Blaze, editor, Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA, pages 287–302. USENIX,
2004.

6. K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi. Graphsc:
Parallel secure computation made easy. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015 [1], pages 377–394.

7. A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
8. E. M. Songhori, S. U. Hussain, A. Sadeghi, T. Schneider, and F. Koushanfar. Tiny-

garble: Highly compressed and scalable sequential garbled circuits. In 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21,
2015 [1], pages 411–428.

9. A. C. Yao. How to generate and exchange secrets (extended abstract). In 27th
Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167. IEEE Computer Society, 1986.

5

